Branched polyethylenimine-grafted-carboxymethyl chitosan copolymer enhances the delivery of pDNA or siRNA in vitro and in vivo
نویسندگان
چکیده
To generate a good carrier for gene transfection, O-carboxymethyl chitosan-graft-branched polyethylenimine (OCMPEI) copolymers were synthesized by increasing the weight percentage of branched polyethylenimine conjugated to the carboxyl groups of O-carboxymethyl chitosan. These spherical polyplexes with plasmid deoxyribonucleic acid (pDNA) or small interfering ribonucleic acid (siRNA) had diameters of ~200-300 nm or ~10-25 nm, respectively, and displayed significant transfection efficiency in normal and tumor cells. In particular, expression of green fluorescent protein (GFP) following pDNA transfection was effectively suppressed by delivery of GFP-specific siRNA with the same copolymer. The optimized copolymer and polyplexes were nontoxic in vitro and in vivo. The use of endocytosis inhibitors to investigate the mechanisms of transfection of the polyplexes suggested the involvement of macropinocytosis. An in vivo study in mice showed excellent GFP expression in the lung, kidney, and liver. The results demonstrated that the OCMPEI copolymer prepared in this study is a promising carrier for in vitro and in vivo gene delivery applications.
منابع مشابه
Modified Polyethylenimine: Self Assemble Nanoparticle Forming Polymer for pDNA Delivery
Objective Polyethylenimine (PEI), a readily available synthetic polycation which has high transfection efficiency owing to its buffering capacity was introduced for transfection a few years ago. But it has been reported that PEI is cytotoxic in many cell lines. In this study, in order to enhance the transfection efficiency of 10 kDa PEI and reduce its toxicity, hydrophobic residues were grafte...
متن کاملGene Expression and Pulmonary Toxicity of Chitosan-graft-Polyethylenimine as Aerosol Gene Carrier
Chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer has been used for theimprovement of low transfection efficiency of chitosan. The present study aims to test thepulmonary toxicity and efficiency of CHI-g-PEI as an aerosol gene carrier. Mice were exposedto aerosol containing green-fluorescent protein (GFP)-polyethylenimine (PEI) or GFP-CHIg-PEI complexes for 30 min during the development of ...
متن کاملGene Expression and Pulmonary Toxicity of Chitosan-graft-Polyethylenimine as Aerosol Gene Carrier
Chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer has been used for theimprovement of low transfection efficiency of chitosan. The present study aims to test thepulmonary toxicity and efficiency of CHI-g-PEI as an aerosol gene carrier. Mice were exposedto aerosol containing green-fluorescent protein (GFP)-polyethylenimine (PEI) or GFP-CHIg-PEI complexes for 30 min during the development of ...
متن کاملSynthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate
N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na)] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na) was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegra...
متن کاملCyclodextrin and Polyethylenimine Functionalized Mesoporous Silica Nanoparticles for Delivery of siRNA Cancer Therapeutics
Effective delivery holds the key to successful in vivo application of therapeutic small interfering RNA (siRNA). In this work, we have developed a universal siRNA carrier consisting of a mesoporous silica nanoparticle (MSNP) functionalized with cyclodextrin-grafted polyethylenimine (CP). CP provides positive charge for loading of siRNA through electrostatic interaction and enables effective end...
متن کامل